

境材料科学研究室

SDGs達成に向けた取り組み

研究テーマ・キーワード Research Themes・Keywords

材料の新たな可能性を創造し、 世界の人々の暮らしを豊かにする

We create a new possibility of materials to make people's lives more prosperous

- 導電性セラミック Conductive Ceramics
- 次電池 Rechargeable Batteries
- 光触媒 Photocatalysts

- 水質浄化
- コンピュータによる材料設計 Computational Materials Design

PROFILE

職位 Position

教授•大学院教授 Professor • Professor at Graduate School

Charge of Subjects

担当講義科目 無機化学 | & ||、物理学 | & || など

Inorganic Chemistry I & II , Fundamental Physics I & II etc

FOR MORE

OKA Nobuto

大学院

生物環境化学コース

Biological and Environmental Chemistry Course

学 位 Degree

Ph.D.

博士(工学)

e-mail

nobuto.oka@fuk.kindai.ac.jp

研究概要 Research Outline

エネルギーや環境負荷を低減する機能を持つ新しい材料を開発して います。新奇素材の高容量電池やアレルギーの原因となる有害物質 を分解する光触媒など、最先端の研究を進めています。

We develops the novel functional materials for decreasing the energy usage and environmental load on the basis of physics, chemistry and computer science.

進行中の研究内容 Research Contents in Progress

● 高容量電池や空気・水の浄化などの機能をもつ新材料の開発 ①エネルギー貯蔵量を劇的に増やす新しい電池材料、②室内灯の 光のエネルギーを使って、空気を浄化する光触媒材料、③放射性セ シウムや有害な重金属を除去するゼリー状物質、④金属のように電 気を流すガラスなど、先端的なデバイスには不可欠の材料を生み出 しています。

Novel Functional Materials have been developed for Rechargeable Batteries, Photocatalysts, Water Decontamination, and so on.

② コンピュータを使った材料設計 材料開発を促進するために、コンピュータを使って新しい機能性 材料を設計しています。電池に使う材料の分子設計など、さまざま な研究を進めています。

To expedite the materials development, we design novel functional materials using computer (Computational Materials Design).

ドイツ・ドレスデンで開催された国際会議ICCG10での基調講演 (招待講演) の様子

最近の研究実績 Recent Research Results

〈論文/Published Papers〉

- 2018~2023年度: 査読付学術論文 15報 15 peer-reviewed scientific papers published in FY2018~2023.
- [招待論文 Invited Paper] Visible-light active thin-film WO₃ photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering, APL Materials 3 (2015) 104407-1-6.
- [招待論文 Invited Paper] Thermophysical Properties of SnO₂-based Transparent Conductive Films: Effect of Dopant Species and Structures, Compared with In2O3-, ZnO-, TiO2-based Films, J. Mater. Res. 29 (2014) 1579-1584.

〈主な受賞欄/Awards〉

- [解説論文] 薄膜合成 ―スパッタ法による機能性セラミックス薄膜の 合成: SnO2系透明導電膜を例に一,セラミックス 58 (2023) 808-812.
- アメリカ材料学会 (Materials Research Society): "the 1st annual JMR Paper of the Year Award"(2015年)

Materials Research Society (USA): "the 1st annual JMR Paper of the Year Award"(2015).

● 所属学生の受賞(2017~2023年度):16件[日本アイソトープ協会: 2020年第24回RADIOISOTOPES誌論文奨励賞,国際会議MECAME 2018 (クロアチア): Young Scientist Best Paper Award, 国際会議 TCM-TOEO2023: Poster Gold Award他]

(Students of this laboratory) 16 awards in FY2017-2023; for example, "JRIA: 24th RADIOISOTOPES Research Promotion Award for Young Scientists (2020)", "4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018, Croatia, 2018): Young Scientist Best Paper Award", and "9th International Symposium on Transparent Conductive Materials & 13th International Symposium on Transparent Oxide and Related Materials for Electronics and Optics (TCM-TOEO2023, 2023): Poster Gold Award"