Researchers

TAKEHARA Kohsei

TAKEHARA Kohsei
Professor
Faculty Department of Civil and Environmental Engineering / Graduate School of Science and Engineering
Researchmap https://researchmap.jp/read0034098

Education and Career

Education

  • - 1986 , Kyushu Institute of Technology, Faculty of Engineering,
  • - 1986 , Kyushu Institute of Technology, School of Engineering,
  • - 1988 , Kyushu University, Graduate School, Division of Engineering,
  • - 1988 , Kyushu University, 工学研究科,

Research Activities

Research Areas

  • Social infrastructure (civil Engineering, architecture, disaster prevention), Hydroengineering

Research Interests

水工水理学, Hydraulic Engineering

Published Papers

  1. Development of fish spatio-temporal identifying technology using SegNet in aquaculture net cages
    S. Abe; T. Takagi; S. Torisawa; K. Abe; H. Habe; N. Iguchi; K. Takehara; S. Masuma; H. Yagi; T. Yamaguchi; S. Asaumi
    Aquacultural Engineering  93  , 102146-102146, May. 2021  , Refereed
  2. A Pixel Design of a Branching Ultra-Highspeed Image Sensor
    Nguyen Hoai Ngo; Kazuhiro Shimonomura; Taeko Ando; Takayoshi Shimura; Heiji Watanabe; Kohsei Takehara; Anh Quang Nguyen; Edoardo Charbon; Takeharu Goji Etoh
    Sensors  21  (7)  , 2506-2506, 3, Apr. 2021  , Refereed
  3. PRELIMINARY STUDY ON WIND PRESSURE MEASUREMENT ON SOLID WAVY BED WITH PRESSURE SENSITIVE PAINT
    Yasuhide TAKANO; Shoma SUGAKI; Kazuyuki NAKAKITA; T. Goji ETOH; Kohsei TAKEHARA
    Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering)  77  (2)  , I_919-I_924, 2021  , Refereed

MORE

Conference Activities & Talks

  1. 魚群を構成する個体の計数技術の開発―個体画像抽出手法の検討― , 阿部悟; 高木力; 米山和良; 鳥澤眞介; 波部斉; 阿部孝司; 井口信和; 竹原幸生; 升間主計; 八木洋樹; 中井彰治; 山口武治; 浅海茂 , 日本水産学会大会講演要旨集 , 26, Mar. 2019
  2. A Silicon image sensor of the frame interval of 10 ns cantured Flying Light , 林直樹; 三井鷹; 井口昭彦; 高野保英; 沖中知雄; 竹原幸生; 下ノ村和弘; 江藤剛治; 江藤剛治 , 映像情報メディア学会技術報告 , 20, Jun. 2018
  3. The ultimate high‐speed image sensor: from 10ns to 50ps , 江藤剛治; 下ノ村和弘; 竹原幸生; 犬丸秀夫; 林直樹; 三井鷹; 井口昭彦; 三原勉 , 映像情報メディア学会技術報告 , 2, Mar. 2018

MORE

MISC

  1. Fish balances flow resistance and high pressure in stagnation area , Eguchi Go; Torisawa Shinsuke; Takehara Kohsei; Takagi Tsutomu , Journal of Aero Aqua Bio-mechanisms , 10 , 1 , 2 , 8 , 2023
    Summary:Fish attempt to optimize their swimming performance within their environments to minimize energy consumption. In this study, we conducted experiments using the Japanese dace (<i>Tribolodon hakonensis</i>), a simple flat plate, and a flume tank to simulate the swimming behavior in which fish exploit the stagnation area of the flat plate for maintaining their position. Two observed cases were: the fish localized by straightening the tail fin along the flow and by bending the tail fin like a cambered wing. The results of drag and lift forces suggest that fish adaptively flex tail fin based on the flow field, and selectively choose the optimal swimming posture for maintaining position.
  2. 水平取水設備における水平管の吸込流速と渦発生に関する実験的検討—EXPERIMENTAL STUDY ON RELATIONSHIP BETWEEN SUCTION VELOCITY AND OCCURRENCE OF INTAKE VORTEX IN HORIZONTAL INTAKE , 久末 信幸; 竹原 幸生 , 水工学論文集 Annual journal of Hydraulic Engineering, JSCE / 土木学会水工学委員会 編 , 65 , Ⅰ_931 , 936 , 2020
  3. Mechanical efficiency of fish thrust induced by tail beating: comparison between kinetic energy and metabolic energy , Eguchi Go; Aoki Yuki; Torisawa Shinsuke; Takehara Kohsei; Takagi Tsutomu , Journal of Aero Aqua Bio-mechanisms , 8 , 1 , 54 , 62 , 2019
    Summary:There are few studies that compare thrust power <i>P</i><sub><i>T</i></sub> induced by tail beating with net metabolic power <i>P</i><sub><i>net</i></sub> obtained from oxygen consumption and mechanical efficiency <i>η</i> (= <i>P</i><sub><i>T</i></sub> <i>P</i><sub><i>net</i></sub> <sup>-1</sup>) of fish thrust. In this study, <i>P</i><sub><i>T</i></sub> and <i>P</i><sub><i>net</i></sub> were obtained using two species of chub mackerel and Japanese dace, and <i>η</i> was calculated by comparing kinetic energy and metabolic energy. <i>P</i><sub><i>T</i></sub> was calculated by multiplying swimming speed <i>V</i><sub><i>swim</i></sub> and thrust force <i>T</i> obtained using two calculation methods, the Milne-Thomson principle and Kutta-Joukowski theorem. Comparing each value, <i>η</i> showed a certain ratio irrespective of fish species and swimming speed. Linear approximation resulted in <i>P</i><sub><i>T</i></sub> = 0.21 <i>P</i><sub><i>net</i></sub> for Milne-Thomson and <i>P</i><sub><i>T</i></sub> = 0.44 <i>P</i><sub><i>net</i></sub> for Kutta-Joukowski.

MORE

Awards & Honors

  1. May. 2020, 可視化情報学会, 令和2年度 技術賞
  2. Nov. 2017, High Speed Imaging Award
  3. 平成8年度 可視情報学会賞 技術賞

MORE

Research Grants & Projects

  1. 日本学術振興会, 科学研究費助成事業, 鰭の柔らかさと動きのしなやかさがもたらす移動能力と機動性向上の解明 , 北海道大学
  2. Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, High-speed video image analyses on actions of sand particles in a water jet obliquely impinging against a solid surface , Kindai University
  3. 日本学術振興会, 科学研究費助成事業, 魚群行動の流体力学的機能性の解明 , 近畿大学

MORE